
Resource
Phenotypic and spatial he
terogeneity of brain
myeloid cells after stroke is associated with cell
ontogeny, tissue damage, and brain connectivity
Graphical abstract
Highlights
d Stroke expands brainmyeloid cell diversity with global spatial

organization

d Brain connectivity to injury underpins locations of remote

microglial reactivity

d Infarct-restricted monocyte-derived cells differentiate along

dual trajectories

d Macrophages of distinct ontogeny but similar phenotype

intermix around the infarct
Patir et al., 2024, Cell Reports 43, 114250
May 28, 2024 ª 2024 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.celrep.2024.114250
Authors

Anirudh Patir, Jack Barrington,

Stefan Szymkowiak, ..., Karen Horsburgh,

Prakash Ramachandran, BarryW. McColl

Correspondence
barry.mccoll@ed.ac.uk

In brief

Patir et al. show the identities of resident

microglia and immigrant macrophages

responding to stroke in brain areas near

and remote to damage. Each niche is

occupied by discrete ontogeny-

phenotype combinations of

macrophages. The findings implicate

brain connectivity in the regulation of

microglia and a global brain macrophage

response to focal stroke.
ll

mailto:barry.mccoll@ed.ac.uk
https://doi.org/10.1016/j.celrep.2024.114250
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2024.114250&domain=pdf


OPEN ACCESS

ll
Resource

Phenotypic and spatial heterogeneity of brain
myeloid cells after stroke is associated with cell
ontogeny, tissue damage, and brain connectivity
Anirudh Patir,1,2,8 Jack Barrington,1,2,3,8 Stefan Szymkowiak,1,2 Gaia Brezzo,1,2 Dana Straus,1,2 Alessio Alfieri,1,2

Lucas Lefevre,1,2 Zhaoyuan Liu,4 Florent Ginhoux,4,5 Neil C. Henderson,6,7 Karen Horsburgh,2 Prakash Ramachandran,6

and Barry W. McColl1,2,9,*
1UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK
2Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
3Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
4Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine,

Shanghai 200025, China
5Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
6Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4TJ, UK
7MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
8These authors contributed equally
9Lead contact
*Correspondence: barry.mccoll@ed.ac.uk

https://doi.org/10.1016/j.celrep.2024.114250
SUMMARY
Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets
for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with
precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke
alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial pat-
terns. Our results show that multiple reactive microglial states andmonocyte-derived populations contribute
to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions
among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain con-
nectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reac-
tivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that
comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to
spatially organized brain damage and neuro-axonal cues.
INTRODUCTION

Acute ischemic stroke is a leading cause of death and disability

worldwide, accounting for the greatest proportion of disease

burden for all neurological disorders.1 Understanding how the

brain responds to initial stroke damage to contain the injury, pro-

mote brain repair, and enhance plasticity is crucial to inform the

design of recovery-enhancing interventions.2,3 Inflammatory and

immune mechanisms are increasingly recognized to connect

tissue damage and repair transitions throughout the body,4

including in the central nervous system (CNS),5–7 and thus are

potential targets for treatments.

Clinical and experimental stroke triggers alterations in traf-

ficking, accumulation, and phenotype of immune cells local to

the stroke-injured brain tissue and in systemic compart-

ments.7–9 Innate immune cells, notably macrophages of resi-

dent microglial origin as well as those derived from infiltrating

blood-derived monocytes, accumulate in and around damaged

brain tissue.10–13 While some microglial/macrophage activities
Cell Reports 43, 114250,
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have the potential to exacerbate tissue damage,14,15 recent

studies increasingly implicate these cells in brain protection

and repair during subacute phases of stroke16–20 and other

CNS injuries.21–23

The heterogeneity of mononuclear myeloid lineage cells such

as microglia, monocytes, and monocyte-derived cells (MdCs)

can relate to their differing ontogenies, intra-population differen-

tiation, and cell plasticity and give rise to diverse functional

roles.24 Previous studies used techniques such as transgene-en-

coded cell reporter mice, in vivo tracer labeling, and bone

marrow chimeras to show that mixed accumulation of broad

myeloid cell populations derived from resident and infiltrating

sources occurs after experimental stroke.10–13,25 Ontogeny-

dependent differences in cell phenotype and function, such as

phagocytic capacity, have been suggested at the broad popula-

tion level.13,15,22,26,27 Nonetheless, the above techniques are

constrained for understanding deeper phenotypic heterogeneity

within these cell subpopulations and the relationships among

them. Spatial organization of mononuclear myeloid cell diversity
May 28, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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in post-stroke brain is also poorly understood, in part because

most studies examining these cells have focused on infarct

and peri-infarct tissue. Recent single-cell RNA sequencing

(scRNA-seq)-based studies have produced valuable insight

into cell diversity in stroke; however, they exclusively profiled

the ipsilateral (peri-infarct) tissue, therefore precluding an under-

standing of important changes in more distant brain areas.9,28–30

Remote effects of stroke on neurodegeneration, neuroplasticity,

and glial reactivity, often in brain areas connected by white mat-

ter tracts to the primary area of damage, are likely critical to

global brain network changes after stroke with consequences

on motor and cognitive outcomes.31–37

Here, we used scRNA-seq and multiplexed single-molecule

fluorescence in situ hybridization (smFISH) approaches corrobo-

rated bymonocyte fate-mapping in a permanent middle cerebral

artery occlusion (MCAO) stroke model. We focused analysis at

3 days post-MCAO, a critical juncture in the subacute phase,

and studied cellular changes in brain areas local and distant to

the focal cortical injury. We show that stroke substantially

expands the diversity of mononuclear myeloid cells through

spatially dependent combinations of altered cell ontogeny,

differentiation, and reactivity. We identify location-dependent

MdC and microglial phenotypes such as Gpnmb-expressing

MdCs dominant in intra-/peri-infarct areas and Ccl chemokine-

enriched microglia in remote brain areas and along connecting

white matter tracts. Our findings bring further insight and

clarity to existing uncertainties and prompt additional questions

around the global brain cellular response to stroke. An openly

accessible and interactive application, Stroke-Brain-MySeq, en-

ables further visualization and analysis of the dataset (https://

mccoll-lab-uoe.shinyapps.io/shinyapp/).

RESULTS

Flow cytometric overview of MCAO-induced immune
cell changes
We acquired cytometric data during cell sorting to provide a

contextual overview of major immune cell subclass abundance

in response to MCAO (Figure S1 shows the overall experimental

workflow). A largely homogeneous CD45+CD11b+ population

consisting of CD45lo cells was observed in the hemisphere

contralateral to MCAO (hereafter referred to as the CTRL condi-

tion) (Figure S2). Two additional CD45hi populations were evident

in ipsilateral hemisphere samples (hereafter referred to as the

MCAO condition), comprising CD11b+Ly6G+ (neutrophils) and

CD11b+Ly6G� cells. We have shown previously that CD45 sur-

face expression levels can distinguish resident microglia from

non-parenchymal myeloid cells.38 We considered CD45loCD11b+

Ly6G� cells as resident microglia and the CD45hiCD11b+Ly6G�
Figure 1. Cell clustering and annotation

(A) Cells were clustered based on their transcriptomic profile and projected by U

(B) UMAPs show cells derived from the CTRL and MCAO experimental condition

(C) From left to right, the images display for each cell cluster (rows) their proport

condition (normalized frequencies compared between conditions; *p < 0.05, **p

mice (M1, M2, and M3), and the expression of selected markers shown as a dot

(D) Expression profile of selected immune cell marker genes projected by UMAP

Annotation of major cell groupings in (A) and (C) is based on annotation of individ
population as blood-derived monocytes and MdCs recruited in

response to MCAO (the full gating scheme for quantification is

shown in Figure S3). MCAO caused a significant increase in the

number of total CD45+ cells, total CD11b+ cells, Ly6G+ granulo-

cytes, microglia, and CD11b+CD45hiLy6G� monocytes/MdCs,

indicatingmarked innate immune cell infiltration and an increased

myeloid cell abundance (Figure S2B). There were negligible CD3+

and CD19+ cells, indicating limited parenchymal T cell and B cell

accumulation (Figures S2A and S2B). Median CD45 intensity of

cells specifically within the microglial population, a measure of

their broad reactive amplitude, was significantly greater (�45%)

in MCAO samples, although it remained �10-fold lower than the

CD45hi infiltrating myeloid population (Figures S2D and S2E), as

we found previously.38 There was also a broader dispersion of in-

dividual microglial CD45 intensities within MCAO samples

(Figures S2F and S2G), suggesting greater heterogeneity within

the microglial population.

Altered mononuclear myeloid cell composition 3 days
after MCAO
We conducted scRNA-seq on CD45+ sorted cells negative for

pan-lymphocyte (CD3 and CD19) and granulocyte (Ly6G) cell

surface markers (Figure S4). Following quality control and

removal of doublets marked by more than one hashtag oligonu-

cleotide (Figure S5), downstream analysis was performed on a

total of 5,213 cells.

Initial unbiased graph-based clustering identified 22 cell clus-

ters organized into four major components when projected by

uniform manifold approximation and projection (UMAP)39 (Fig-

ure 1A). Appropriateness of clustering granularity was supported

by ratio of global unshifted entropy40 analysis (Figure S6). Over-

laying mouse donors with expression clusters showed that all

clusters comprised cells from each donor mouse (Figures 1B

and 1C). We annotated the 22 cell clusters based on canonical

marker genes for immune cell classes combined with expression

of the most variable genes for each cluster (Figures 1C, 1D, and

S7; Table S1). As anticipated from the cell sorting strategy,

almost all clusters were of myeloid origin, and there was no iden-

tifiable granulocyte cluster. Broadly, these clusters were identi-

fied as microglia, peri-vascular-associated macrophages/

border-associated macrophages (BAMs), dendritic cells (DCs),

monocytes, and MdCs as guided by lineage-defining genes

such as Csf1r combined with broad subpopulation-selective

myeloid genes (e.g., P2ry12, Ccr2, Flt3) (Figures 1C; Table S2).

A large group of brain-resident microglia, comprising multiple

subclusters (described below), was evident by the high expres-

sion of signature genes including P2ry12, Tmem119, Gpr34,

and Fcrls. Ly6Chi (cluster 8) and Ly6Clo (cluster 15) monocytes

were clearly distinguished by their relative expression of genes
MAP.

s and from each of the three donor mice.

ion within each condition (also indicated by the color), their distribution across

< 0.01, and ***p < 0.001, Student’s t test), their distribution across three donor

plot.

. PVM, peri-vascular macrophage; BAM, border-associated macrophage.

ual clusters (see Table S2).
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Figure 2. Multiple microglial reactive states associated with MCAO

(A) Microglia were subclustered and based on their transcriptomic profile projected by UMAP. The inset UMAP shows theMCAO and CTRL conditions cells were

derived from.

(legend continued on next page)
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such as Ccr2, Ly6C, Nr4a1, and Adgre4. Clusters adjacent to

Ly6Chi monocytes in the UMAP implicated these as differenti-

ating MdCs progressing along macrophage (clusters 7 and 11)

and DC (cluster 6) trajectories based on both canonical gene

expression (e.g., Apoe and Lyz2 for macrophages and Flt3 and

Itgax for DCs) and expression gradients indicative of their matu-

ration from monocytes (e.g., declining but detectable Ccr2 and

Sell expression). Two clusters of DCs were identifiable as con-

ventional DCs (cDCs; e.g., high expression of Batf3, Irf8, and

Ifi205) and migratory DCs (MigDCs; e.g., high expression of

Ccr7 and Anxa3). The relationships among these monocyte-

derived and DC clusters are examined in further detail below.

An additional cluster of P2ry12loFcrls+ cells distinct from micro-

glia expressed high levels of Mrc1, Cd163, and Pf4, which is

characteristic of peri-vascular/border macrophages (cluster

20). Several clusters of cells expressed high levels of cell-cy-

cle-associated genes (e.g., Mki67, Top2a), primarily restricted

to those of microglial identity.

Heterogeneity of reactive microglia 3 days after MCAO
We explored MCAO-associated microglial heterogeneity more

deeply by subclustering on the population of P2ry12+Fcrls+

cells, thus excluding non-parenchymal border macrophages

(P2ry12�Fcrls+) and non-resident immune cells (P2ry12�Fcrls�).
16microglial cell clusters (cMGs) were identified (Figures 2A–2C;

Table S3). Unbiased weighted gene co-expression network

analysis (WGCNA) on the 3,890 genes that were differentially

expressed across microglia (Figure S8; Table S4) identified

gene co-expression modules (gMGs) associated with these

cMGs (Figures 2D and S9; Table S5), and pathway enrichment

analysis explored biological pathway representation (Figure 2D;

Table S5).

Four cMGs (cMG1–3, 6) expressed high levels of established

homeostatic microglial genes, such as Hexb, Tmem119,

Gpr34, and P2ry12 contained within gMG4, in the absence of

overt activation or cell-cycle-related gene modules (see below).

gMG4 was enriched for terms including ‘‘P2Y receptors’’

(adjusted p value [padj] = 1.9 3 10�2) and ‘‘transforming growth

factor (TGF)-beta receptor signaling’’ (padj = 7.43 10�3) consis-

tent with a homeostatic state. cMG3/6, derived largely from

MCAO samples, showed mildly reduced expression of gMG4

homeostatic genes and elevation of gMG7 lysosomal/ribosomal

genes compared to cMG1/2, perhaps reflective of a transitional

state (Figure 2D).

The remaining cMGs expressed relatively lower levels of the

homeostatic microglial gene set (gMG4). cMG7 and cMG16,

both derived exclusively from MCAO samples, expressed the

lowest levels of the homeostatic gene set and shared marked in-

duction of several large gene modules (gMG3, -5, and -7) collec-
(B) From left to right, for each cell cluster (rows), images show the proportion of all

the color), the proportion of cells within the cell cluster derived from each con

**p < 0.01, Student’s t test), and a dot plot of the expression of marker genes.

(C) Expression of selected marker genes projected by UMAP.

(D) Using gene co-expression analysis (WGCNA), gene modules (rows) were iden

here signify the scaled average expression of genemodules across the various cel

terms shown, padj < 0.05). The color captures the scaled�log10 adj. P value for t

module.
tively comprising over 800 differentially expressed genes, thus

indicating the large-scale reactivity of these cells. High expres-

sion of gMG3 genes such as Cst7, Spp1, Apoe, and Lgals3 and

various cathepsin genes (Figures 2B–2D) indicated these cell

clusters, particularly cMG7, as most resembling the disease-

associated microglia (DAM)/activated-response microglia (ARM)

state first described in chronic cerebral proteinopathy models.

cMG7 and cMG16 also expressed high levels of other gMG3

gene sets involved in ‘‘lipid metabolism process’’ (e.g., Apoe,

Acadl, Spp1), cell ‘‘oxidation-reduction process’’ (e.g., Cybb,

Hmox1, Sod2), and glycolytic and oxidative ‘‘ATP biosynthetic

process’’ (e.g., Pkm and mitochondrial complex genes) (Figures

2B–2D), implicating these microglial clusters as extremely meta-

bolically active. The major difference distinguishing cMG7 and

cMG16 was high expression in cMG16 of cell-cycle-enriched

gene modules (gMG8 and -11) (Figure 2B), perhaps indicating

the positioning of cMG16 microglia at the transition between

cell cycle and certain differentiated reactive states. Genes

defining these clusters (e.g., Apoe, Spp1) were also significantly

elevated in a pseudo-bulk comparison between all MCAO- and

CTRL-derivedmicroglia (Table S6). cMG5microglia were distinc-

tive due to their high expression of interferon (IFN) pathway

genes, including Irf7, Isg15, and Stat1 and multiple genes from

the Ifi, Ifit, and Ifitm families (all containedwithin the gMG9module

enriched for ‘‘IFN signaling’’ (padj = 2.4 3 10�3) (Figures 2B–2D).

cMG10 microglia were distinguished by their selectively high

expression of gMG16 containing chemokine and cytokine genes

(gMG16: Ccl3 and Ccl4, Egr1, Il1b, Tnf) (Figures 2B–2D). In sup-

port of this, gMG16 was enriched for ‘‘chemokine receptors

bind chemokines’’ (padj = 2.5 3 10�2) (Figure 2D). Interestingly,

cMG10 was comprised of a significantly greater number of

CTRL cells, perhaps indicating an involvement of this state in

microglial reactivity remote from the primary infarction, as

explored further below. Consistent with our enzyme-free cell

isolation methods, there was negligible/zero expression of

ex vivo artefact-related microglial activation genes (e.g., Dusp1,

Fos, Hspa1a)41 in all clusters (Figure S10).

Microglial cell cycle trajectory induced by MCAO
Several microglial clusters (cMG11–16) expressed high levels of

canonical cell cycle marker genes (e.g., Pcna, Mki67, Top2a,

Cdk1), and WGCNA showed gene modules (e.g., gMG1, -2,

and -12) enriched for cell cycle processes in these clusters

(Figures 3A–3D; TablesS3–S5), consistentwith our previous find-

ings of proliferative microglia early after experimental stroke.11

We estimated the dynamics of this cell cycle responsemore thor-

oughly, first classifying all subclustered microglia according to

cell cycle phase (G1, S, G2/M) using Seurat (Figure 3A) and visu-

alizing the expression pattern of the Seurat cell cycle gene set42
cells contributing to each of the MCAO and CTRL conditions (also indicated by

dition (normalized frequencies compared between conditions; *p < 0.05 and

tified that varied in their expression across the cell clusters (columns). Colors

l clusters. Genemodules were assessed for pathway enrichment (top six KEGG

he analysis. The rightmost image shows the number of genes within each gene
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Figure 3. Microglial cell cycle analysis

(A) Cell cycle phase assignment (Seurat algorithm) of subclustered microglia. The transcriptome-based clustered UMAP from Figure 2 is shown for reference

(inset). Cells progressing through S to G2M forming an arc-like arrangement are highlighted, with endpoints marked in black and gray.

(B) Heatmap of genes significantly (padj < 0.05) changing along the arc of cycling cells. Genes (rows) are colored by cell cycle phase annotation, and cells

(columns) are colored by cell cycle phase and transcriptome-based cell cluster.

(C) Expression profile of selected genes representing cell cycle phases, microglial reactivity, and homeostasis in cells from indicated clusters arranged along

pseudo-time. Each cell is colored based on its transcriptome-based cluster membership (see inset in A).
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across cycling microglia and adjacent clusters (Figure 3B). Cells

in S and G2/M phases showed a progression across cell clusters

11–16 (Figures 3A and 3B). Pseudo-time analysis was conducted

on this arc of proliferative cells, thereby modeling a trajectory

from cMG11 > cMG13 > cMG14 > cMG15 > cMG12 > cMG16.

We noted with interest the rising expression in cMG16 of many

genes that reached maximal expression across pseudo-time in

cMG7 reactive microglia (e.g., Apoe, Flt1, Plin2, Spp1) and that

this coincided with the lowest expression across all clusters of

homeostatic genes (e.g., Cx3cr1, P2ry12, Hexb) (Figure 3C).

Coupled with the observation that cMG7 microglia and cMG16

also clustered hierarchically by unbiased WGCNA (Figure 2D),

these results suggest potential close relationships between the

cell cycle and the emergence of selected forms of microglial

reactivity.
6 Cell Reports 43, 114250, May 28, 2024
Comparative analysis of microglial states in stroke and
other neurological conditions
We quantitatively assessed the correspondence between our

stroke-associated microglial clusters and those in selected

mouse models of neurodegenerative disease, aging, or inflam-

mation (Figure S11; Table S7).43–50 Our stroke model cMG7

expression profile showed a substantial overlap with microglial

clusters observed in most other conditions, including aging,

amyloidopathy, de/remyelination, and CNS trauma—this cluster

comprises the state commonly termed DAM/ARM characterized

by genes such as Lgals3, Plin2, and Spp1. The high odds ratio

between our stroke model cMG5 and microglial clusters

observed in amyloidopathy (Sala-Frigerio, interferon-response

microglia [IRM]),48 aging (Hammond, OA3),49 neurodegeneration

(Mathys, C6),44 and de/remyelination (Nugent, C8)46 was



(legend on next page)
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consistent with their signature of type 1 IFN pathway genes.

These data indicate that IFN-enriched (e.g., IRM) and phagome-

tabolic-enriched (e.g., DAM) microglial expression states are

phenotypes common to multiple forms of CNS pathology, both

acute and chronic. Contrasting with the above clusters showing

widespread diseasemodel intersection, the overlap between our

stroke model cMG10 (enriched for chemokine and inflammatory

genes such as Ccl3, Ccl4, and Il1b) and other models was more

restricted, showingmarked similarity only with aging (Hammond,

OA2)49 and CNS trauma (Milich, inflammatory microglia).45 This

may suggest that this microglial expression state is associated

with more specific types of injury-/aging-associated tissue dam-

age or distress signals. There was marked overlap of our stroke

model cMG16 cell cycle cluster with the transiting-response mi-

croglia (TRMs)48 (which are likely transitioning to ARMs) in CNS

amyloidopathy. As described above (Figures 2 and S9),

cMG16 co-expresses certain gene modules with the ARM/

DAM-like cMG7 after MCAO; their relatedness was also high-

lighted by individual gene trajectories across pseudo-time (Fig-

ure 3). In our cross-model comparison, cMG7 additionally over-

laid markedly with the dividing microglial cluster in spinal cord

trauma.45 These cross-model data further implicate direct rela-

tionships between certain reactive microglial states and the

cell cycle that appear relevant to multiple CNS pathologies.

MCAO induces accumulation and differentiation of
monocytes along two major trajectories
Wemore deeply examinedmyeloid cells of non-microglial (NMG)

identity by re-clustering all NMG cells and used differential gene

expression (Figure S12; Table S8) and WGCNA (Figure S13;

Table S9) to define cluster characteristics (Figures 4A–4D;

Table S10). Two clusters were identified as CNS BAMs.

cNMG9 expressed high levels of the gNMG1 genemodule genes

including Cd163, Clec10a, and Vcam1, whereas cNMG12 ex-

pressed relatively greater Itgb5, Aif1, and major histocompatibil-

ity complex (MHC) class II-encoding genes, consistent with

recent descriptions of peri-vascular/border macrophages segre-

gating according to MHC class II expression51 (Figures 4A–4D).

cNMG5 cells expressed selectively high levels of Nr4a1, Itgal,

and Adgre4 (part of the gNMG8 gene module), and negligible

Ly6c2 and Ccr2, marking these as the patrolling/marginating

Ly6Clo/� monocytes. Conversely, cNMG4 cells expressed very

high levels of Ly6c2, Sell, and Ccr2, indicating these as stroke-

induced Ly6Chi monocyte immigrants given their almost exclu-
Figure 4. Heterogeneity and differentiation trajectories of non-microg
(A) Non-microglial cells were subclustered and projected by UMAP based on trans

which subclustered cells were derived.

(B) From left to right, for each cell cluster (rows), images show the proportion of ce

by the color) and a dot plot showing expression of marker genes.

(C) Expression of selected marker genes projected on the cell UMAP.

(D) Using gene co-expression analysis (WGCNA), gene modules (rows) were iden

signify the scaled average expression of gene modules across the various cell c

terms shown, padj < 0.05). The rightmost image shows the number of genes wit

(E) RNA velocity analysis projected by UMAP of cells from clusters annotated as L

(F and G) Pseudo-time analysis of the above Ly6Chi monocytes and monocyte-d

showing genes (rows) altered significantly (padj < 0.05) across cells ordered along

color scale represents scaled expression, going from low expression levels (blue

(H) Expression level of selected genes in cells (dots, colored by cell cluster) alon
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sive derivation from MCAO samples (Figure 4B). cNMG7 re-

tained Ccr2 with diminished expression of gNMG7 module

genes (e.g., Ly6c2 and Sell), suggesting an early monocyte dif-

ferentiation phenotype. Similarly, the gNMG7 gene set was

diminished in cNMG3 cells but alongside the induction of genes

(mainly within the gNMG3 module) associated with cell-matrix

adhesion and migration (e.g., Ecm1, Fn1, Tgfbi). gNMG3 gene

module genes were highly induced in cNMG2 cells that were

additionally defined by the high expression of genes involved

in macrophage lipid storage (Plin2), metabolism (Lipa, Gpnmb),

lipoprotein assembly (Apoe, Apoc1, Apobec1), and cholesterol

efflux (Abca1, Npc2). cNMG2 cells appeared in a highly tran-

scriptionally active state given the extensive set of genes

induced (e.g., gNMG3 module contains >500 genes;

Figures 4D and S13). Among several enriched functional gene

classes, those involved in lysosomal acidification (Atp6v family)

and enzymatic activity (including proteases, glycosidases, li-

pases, and nucleases) were the most prominent, substantiated

by KEGG analysis revealing ‘‘lysosome’’ and ‘‘phagosome’’ as

enriched pathways (Figure 4D). cNMG6 and cNMG10 cells

shared high expression of a distinctive IFN response-enriched

gNMG9 module (e.g., Irf7, Ifit3, Isg15, and Oasl2), with the addi-

tional expression of MHC class II antigen-presenting genes (e.g.,

H2-Aa andH2-Eb1) contained within the gNMG5 genemodule in

cNMG10 cells. This MHC class II peptide processing and pre-

sentation gene set was also highly expressed by cNMG1 cells

but in the absence of the IFN module. We also noted the MHC

class II master transcriptional regulator Ciita as one of the

most highly induced genes in cNMG1, substantiating their anti-

gen-presenting cell phenotype, and with high expression of

Flt3 and CD209a but not Zbtp46, this is typical of a MoDC iden-

tity distinct from the cDC lineage.52 Zbtb46, in contrast, was

highly expressed with other canonical genes (e.g., Ifi205) as

part of the gNMG6 gene module indicating cNMG11 cells as

cDCs.53,54 cNMG8 cells were readily identifiable as MigDCs by

their high expression of genes such as Ccr7 and Traf1.53

The observations above implicated MCAO-induced differenti-

ation of blood-derived Ccr2hiSell+Ly6c2+ monocytes (cNMG4)

toward highly differentiated monocyte-derived macrophages

(MDMs) (cNMG2; enriched for lipid metabolism, lysosomal activ-

ity, matrix interactions) or MoDC (cNMG1; enriched for MHC

class II antigen presentation) fates. Trajectory inference using

RNA velocity (Velocyto)55 (Figure 4E) revealed a trajectory of

transcriptional change progressing from cNMG4 (monocytes)
lial mononuclear myeloid cells associated with MCAO
criptomic profile. The inset UMAP shows theMCAO and CTRL conditions from

lls from that cluster of all cells within theMCAO or CTRL conditions (also shown

tified that varied in their expression across the cell clusters (columns). Colors

lusters. Gene modules were assessed for pathway enrichment (top six KEGG

hin each gene module.

y6Chi monocytes and monocyte-derived cells (Figures 4A and 4B; Table S10).

erived cells moving from light to dark with time (F). Heatmaps for each curve

the trajectories and organized by unsupervised hierarchical clustering (G). The

) to high (red).

g pseudo-time trajectories.



Figure 5. Comparative analysis of reactive microglia and non-microglial mononuclear myeloid cells associated with MCAO

(A) Composite transcriptome-based UMAP projection of subclustered microglia (right; from Figure 2A) and non-microglial myeloid cells (left; from Figure 4A).

(B) Using gene co-expression analysis (WGCNA), gene modules (rows) were identified that varied in their expression across all the microglial and non-microglial

myeloid cell clusters (columns). Gene modules (rows) and cell clusters (columns) are arranged by unsupervised hierarchical clustering. Major groupings of cell

clusters and selected gene modules with representative genes were manually annotated for orientation (see Table S12 for full pathway analysis).

(legend continued on next page)
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toward cNMG2 (MDMs) via cNMG3 and toward cNMG1

(MoDCs) via cNMG7/6/10. Pseudo-time analysis56 (Figure 4F)

aligned cells along two curves representing a two-branched tra-

jectory originating from cNMG4 (monocytes). We determined the

genes statistically highly variable across pseudo-time and

grouped them according to their hierarchical clustering pattern

(Figure 4G). This demonstrated the progressive gradients of

expression for gene sets both induced and repressed along

pseudo-time with exemplar genes such as Ccr2, Sell, Cd68,

and H2-Aa (Figure 4H), representative of the continuum in differ-

entiation from monocyte to MDM and MoDC states. The tran-

sient induction of the IFN-response gene module (Figures 4G

and 4H) further suggested an important role during monocyte-

to-MdC transition.

Comparative analysis of reactive microglia and MdCs
Wewere particularly interested in exploring more formally and at

a cluster-specific level how the profiles of reactive microglia and

the differentiatedMdCs related to each other, given their concur-

rent appearance and previous challenges in distinguishing these

cells by bulk analyses. We integrated the subclusteredmicroglial

and NMG datasets (Figure 5A) and conducted WGCNA, thus

generating an expression matrix of both shared and distinct

gene modules across all mononuclear myeloid cell subclusters

(Figures 5B and S14; Tables S11 and S12). Myeloid gene mod-

ules (gMYs) were annotated according to KEGG pathway anal-

ysis and manual inspection (Figure 5B; Table S12). Cell clusters

formed three major top-level hierarchical groups comprising (1)

all microglial states and BAMs, (2) Ly6Chi monocytes and

MDMs, and (3) cells of DC phenotype (including MoDCs,

cDCs, and MigDCs) and Ly6Clo monocytes (Figure 5B). The

DC grouping was most distinct among all cell clusters and was

characterized as expected by the high expression of antigen

processing and presentation genes (gMY4, gMY15). Microglia

did not express this antigen-presenting gene module whether

of CTRL or MCAO sample origin, or of homeostatic or reactive

transcriptional phenotype and more broadly, they shared few

gene modules with the DC grouping. In contrast, several micro-

glial clusters co-expressed gene modules (gMY25 and gMY33)

with the Ly6Chi monocyte/MDM grouping. gMY33 was enriched

for lysosomal function and expressed by most microglial clus-

ters, including those with moderate/high homeostatic gene

expression (e.g., cMG1). The most striking similarity was evident

between reactive MCAO-enriched cMG7 (DAM/ARM-like) mi-

croglia with severely repressed homeostatic gene set expression

(gMY1: Csf1r, P2ry12, and Trem2) and the highly differentiated

MDM cluster (cNMG2). This relatedness was driven by co-

expression of the above lysosomal gene modules (e.g., gMY29

containing Cd68, gMY16 containing Ctsb) with additional mod-

ules (gMY10 and -23) that were notable for the presence of

genes commonly considered part of the DAM microglial signa-
(C) Expression distribution of representative genes across each cell cluster.

(D) Analysis of differential gene expression between cMG7 (DAML) and cNMG2

(E and F) Images of Cst7 and Gpnmb transcripts in peri-infarct brain area 3 days a

(E) TdTomato (TdTOM) reporter from Ms4a3CreERT2/+RosaTdT/+ mice or (F) P2Y12.

from a representative animal from sham and stroke groups. Images from all an

microglia; PVM, peri-vascular macrophage; BAM, border-associated macrophag
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ture (e.g., Spp1, Apoe) and genes involved in glycolysis (e.g.,

gMG31 containing Pkm) (Figures 5B and 5C). A noteworthy

exception was Cst7, which was expressed highly in reactive mi-

croglia but not MDMs. The broader transcriptional basis for the

overarching distinction of these cell clusters was driven by

gene modules reflecting the monocytic origin of MDMs (e.g.,

gMY17 containing Ccr2 and Sell) and differences in oxidative

metabolism and translational activity (e.g., gMY3: enriched for

electron transport chain complex and mitochondrial-ribosome

genes). The gMY22 expression module comprised some genes

expressed selectively in MDMs compared to cMG7 microglia,

including Arg1, Emp1, and Gpnmb (Figures 5B and 5C). We

also noted several genes (e.g., Lgals3, Plin2) that, although ex-

pressed by both cMG7 microglia and cNMG2 MDMs, had levels

that were markedly greater and more consistently expressed

across cells within the MDM cluster (Figure 5C). Differential

gene expression analysis between these two specific clusters

(cMG7 vs. cNMG2) showed the individual genes that most

differed (Figure 5D; Table S13), within which we noted Gpnmb

(MDMs) andCst7 (DAM-likemicroglia) as among themost distin-

guishing. To corroborate the interpretations of ontogeny from

scRNA-seq profiles, we assessed the localization of Gpnmb

and Cst7 transcripts in Ms4a3CreRosaLSL-TdT fate-mapping

mice, which express TdTomato (TdT) only in MdCs originating

in bone marrow.57 We observed abundant TdT+ cells in the brain

after MCAO located in the peri-infarct area (Figure 5E and S15),

consistent with scRNA-seq data showing clusters annotated as

Mo-related almost exclusively derived from the MCAO (ipsilat-

eral) hemisphere (Figures 1C and 4A). smFISH showed Gpnmb

transcript puncta restricted to TdT+ cells and expression of

Cst7 only localized to TdT� cells (Figure 5F). Accordingly, Cst7

puncta were localized to cells expressing the microglial marker

P2Y12 and Gpnmb to P2Y12� cells in the same peri-infarct re-

gion, thus validating the ontogeny-phenotype relationships

from scRNA-seq profiling (Figures 5F and S15).

In situ analysis reveals spatial organization of myeloid
cell responses associated with structural brain
connectivity after MCAO
By sampling cells from hemispheres ipsilateral and contralateral

to arterial occlusion, our scRNA-seq expression patterns impli-

cated spatially organized cell types and states. We used multi-

plexed smFISH to orthogonally validate this spatial heterogene-

ity, comparing the regional distribution of cMG7 (DAM-like) with

cMG10 (chemokine-enriched) using cluster-defining genes

Spp1 and Ccl3 alongside the microglial marker Fcrls (Figures

6A and 6B). Ccl3was not expressed at detectable levels in brain

tissue in sham-operated controls (Figure 6A). High-magnification

confocal imaging of combined Fcrls, Ccl3, and Spp1 revealed

that Fcrls did not co-localize with either cluster-defining marker

in sham control brains, indicating that both phenotypes were
(MDM). Differentially expressed genes (padj < 0.05) are colored blue.

fter stroke (or equivalent in sham) in combination with immunofluorescence for

Images show low and high magnification (composite and individual channels)

imals are shown in Figure S15. MDM, monocyte-derived macrophage; MG,

e; MoDC, monocyte-derived dendritic cell; DC, dendritic cell.
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reactive to stroke induction and were not features of a homeo-

static or surgically induced microglial landscape (Figures 6B

and S16). In contrast, labeling of all three genes was increased

in the brain 3 days post-MCAO, albeit with differing spatial distri-

butions (Figure 6A). The increased labeling of both Fcrls andCcl3

was observed in peri-infarct regions and along brain regions

structurally connected to the cortical infarct/peri-infarct, such

as transcallosal and cortico-striatal fibers. On the contrary,

MCAO-specific Spp1 labeling was highly enriched to infarct

and peri-infarct brain tissue (Figures 6A and 6B), consistent

with our scRNA-seq finding that cMG7 was specific to the ipsi-

lateral hemisphere (Figure 6B). Quantification confirmed the

presence of Fcrls+Ccl3+ and Fcrls+Spp1+ cells around the infarct

that were absent in sham controls. Fcrls+Ccl3+ cells were, how-

ever, �10-fold more abundant than Fcrls+Spp1+ cells along

transcallosal fibers in the corpus callosum (padj = 2.4 3 10�6;

Figure 6B) and �6-fold in the contralateral cortex (Figure 6B).

Thus, Ccl3+ microglia (i.e., reflective of cMG10) appear both in/

around primary infarcted tissue and in perturbed communicating

fibers in remote, structurally connected brain regions. Spp1+ mi-

croglia (i.e., reflective of cMG7), in contrast, are mostly restricted

to infarct/peri-infarct tissue 3 days post-MCAO. However, a

small but significant increase in cell number above sham tissue

in the corpus callosum (Figure 6B; padj = 0.001) may indicate

that this reactive state also appears in connected regions. In

support of the structural brain connectivity largely explaining

the spatial pattern of microglial reactive states, areas of remote

microglial reactivity revealed by smFISH mapped to brain areas

directly connected to the site of primary stroke injury when

viewed on matched coronal planes from the viral tracing-based

Allen Brain Connectivity Atlas (https://connectivity.brain-map.

org/) (Figures S17A and S17B). We also observed morphological

signs of reactive P2Y12+ microglia by immunostaining only in

local and remote (connected), but not remote (unconnected),

brain areas (Figures S17C and S17D).

Spp1 was highly enriched in both cMG7 (DAM-like) and

cNMG2 (MDM) cells in our scRNA-seq analyses (Figures 2 and

4) and thus likely labels cells of both ontogenies in situ. To better

separate these two cell classes, we performed smFISH on the

pan-mononuclear phagocyte marker Csf1r, the cNMG2-specific

marker Gpnmb (validated by Ms4a3-based fate-mapping

above), and microglial-enriched Fcrls (Figures 6C–6E). Gpnmb

was notably absent in sham control brain tissue, whereas

Csf1r and Fcrls co-localized across the entire brain section (Fig-

ure 6C). In contrast, Gpnmb was strongly expressed within and
Figure 6. Spatially resolving microglial and non-microglial transcriptio
(A) Slide-scanned images of Ccl3, Fcrls, and Spp1 transcripts in (top) sham-op

channels are separated and presented in grayscale.

(B) Maximum intensity projections from high-power confocal stacks in ipsilatera

stroke brains (scale bar, 50 mm). Fcrls+Ccl3+ (cyan) and Fcrls+Spp1+ (magenta) ph

sham and stroke brain and abundance compared across brain regions (*signifi

phenotype; linear mixedmodel with Holm-Sidak post hoc pairwise comparison; *p

per group). Data are expressed as mean ± SEM.

(C) Slide-scanned images of Csf1r, Fcrls, and Gpnmb transcripts in sham and st

(D) Maximum intensity projection of transcript expression in the peri-infarct regio

(E) Fcrls�Gpnmb+Csf1r+ (blue) and Fcrls+Gpnmb+Csf1r+ (white) phenotypes were

abundance compared across phenotypes (*significantly different in one-sided t

applied for three comparisons; *padj <0.05; n = 4 biological replicates [animals]
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around the infarct of MCAO brain tissue. High-magnification

confocal imaging revealed that Gpnmb+ cells expressed low

levels of Csf1r compared to neighboring Fcrls+ cells (Figure 6D),

consistent with the finding that Csf1r is more highly expressed

by microglia and BAMs over cells of bone marrow origin

(Figures 1C and 1D). These Gpnmb+Fcrls�Csf1r+(lo) (cNMG2,

MDM) cells were �5-fold more abundant in peri-infarct tissue

than Gpnmb+Fcrls+Csf1r+(hi) cells (Figure 6E; padj = 0.04). In

accordance with our fate-mapping approaches (Figures 5E,

5F, and S15), these data indicate that cNMG2 MDMs recruited

to the brain following MCAO are confined to the infarct and

peri-infarct tissue, in close proximity to cMG7 microglia that

share transcriptional features.

Our scRNA-seq analysis indicated that there were two poten-

tial routes to increasing the brain macrophage pool following

stroke, i.e., the proliferation of resident microglia and the recruit-

ment of immature monocytes and subsequent maturation into

MDMs (Figures 1, 2, and 4). To identify the spatial correlates

for these parallel routes, we combined Fcrls with the monocyte

marker Ccr2 and the cell cycle marker Mki67 (Figures 7A–7D).

Labeling of Ccr2was notably absent in sham-operated controls,

andMki67 labeling in shamswas consistent with known anatom-

ical proliferative cell niches in steady state (periventricular zones

and hippocampus) (Figure 7A). Mki67 rarely co-localized with

Fcrls in control brains (Figure 7B). 3 days post-MCAO, Ccr2

was present within and around the infarct, andMki67 was found

in peri-infarct regions and in structurally connected regions, such

as the thalamus (Figure 7A). High-magnification confocal micro-

scopy revealed that�15%of the Fcrls+ cells (�50 of a total�350

Fcrls+ cell/mm2 pool) in peri-infarct tissue were positive for the

cell cycle marker Mki67, whereas none of the Ccr2+ cells were

Mki67+, despite the close proximity of Fcrls+ and Ccr2+ cells

(Figures 7B and 7C). No Ccr2+ cells were observed in the corpus

callosum or contralateral cortex of MCAO brains, although some

Mki67+Fcrls+ cells could be seen in these regions structurally

connected to the primary infarct (Figure 7D), consistent with

the respective bilateral recovery of these cells in our scRNA-

seq experiment (Figure 1). We next looked to compare in situ la-

beling of the Mki67 gene with immunolabeling for the encoded

protein Ki-67 (Figures 7E–7G). In line with transcript-level data,

Ki-67+P2Y12+ microglia were rare in sham-operated control

cortical brain tissue (Figure 7E). However, a large amount of Ki-

67+P2Y12+ microglia were evident in peri-infarct tissue 3 days

post-MCAO. Most of these Ki-67+ microglia were more ameboid

and expressed lower levels of P2Y12 than neighboring Ki-67�
nal phenotypes
erated control brain sections and (bottom) 3 days following stroke. Individual

l peri-infarct (Ipsi), corpus callosum (CC), and contralateral cortex (Contra) of

enotypes were manually quantified from 3–6 non-overlapping regions in each

cantly different from sham, #significantly different from other transcriptional

adj <0.05, **padj <0.01, and ***padj <0.001; n = 4 biological replicates [animals]

roke.

n with (left) combined and (right) individual channels shown (scale bar, 50 mm).

manually quantified in sham cortex (left) and peri-infarct of stroke (right) and cell

test against zero, #significantly different in paired t test; Bonferroni correction

per group). Data are expressed as mean ± SEM.

https://connectivity.brain-map.org/
https://connectivity.brain-map.org/
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ramified microglia that were a greater distance from the infarct

border. Such a reduction in P2Y12 expression is consistent

with our transcriptional dataset indicating that microglia downre-

gulation of homeostatic markers is maximal in cycling microglia

(Figure 3C). We were also able to visualize the appearance of

stroke-specific Ki-67+P2Y12+ hypertrophic microglia in the

corpus callosum (Figure 7F) and contralateral cortex (Figure 7G).

Together, these data indicate that microglia enter the cell cycle

around infarcted tissue and in structurally connected, remote

brain regions. We also note with interest the close proximity

of proliferating microglia, immigrant monocytes, and differenti-

atedMDMs in peri-infarct zones, which implies sharedmolecular

determinants of mononuclear phagocyte fate at this time point

after stroke independent of ontogeny.

Overall, these smFISH results align closely with our scRNA-

seq data and, by comparing sham- and MCAO-operated tissue,

provide in situ confirmation that these reactive phenotypes,

whether of proximal or remote location to the infarct, are induced

by stroke. For additional corroboration at scRNA-seq level, we

mined an independent MCAO dataset conducted on the same

droplet-based platform (Zheng et al., GEO: GSE174574)9 and

identified sham-enriched microglia by re-clustering and anno-

tating microglia according to the authors’ original marker genes

(Figures S18A–S18C; see STAR Methods for full details). This

identified Zheng_c0 as a sham-enriched homeostatic microglial

cluster. Comparison of normalized and scaled expression of top

marker genes between sham-enriched Zheng_c0 and microglial

clusters from our study showed a similarity in the expression pro-

files between our homeostatic microglia (cMG1, cMG2) and

Zheng_c0 but a clear distinction between our reactive microglial

clusters and Zheng_c0 (Figure S18D). This distinction was

evident for reactive microglial clusters in our study whether

they were predominant in the ipsilateral or contralateral hemi-

sphere. This provides further independent validation of the

stroke-induced specificity of reactive phenotypes we observe

in hemispheres ipsilateral and contralateral to stroke, consistent

with our smFISH results and emphasizing the global pattern of

microglial reactivity to focal ischemic brain damage.

DISCUSSION

The present study demonstrates a globally organized and

diversely comprised mononuclear myeloid cell response to

experimental stroke. This increased cellular and spatial diversity

presumably reflects the array of de novo environmental signals

and complex tissue changes differing by brain location that

require a greater range of cell specializations in the aftermath
Figure 7. Spatially mapping cell cycle microglia at the transcript and p

(A) Slide-scanned images of Fcrls, Ccr2, and Mki67 transcripts in (top) sham-ope

(B) Maximum intensity projection from high-power confocal stacks in (left) sham

(C) Fcrls+Ccr2�Mki67� (yellow), Fcrls�Ccr2+Mki67� (cyan), Fcrls+Ccr2+Mki67� (g

were manually quantified from 3–6 non-overlapping regions of sham cortex and st

Data are expressed as mean ± SEM.

(D) Representative images of stroke Contra, sham CC, and stroke CC (scale bar

(E) Protein Ki-67 immunolabeled in (left) sham cortex and (right) stroke peri-inf

visualized on a continuous scale with black/blue representing low, green average

white box (scale bars: large image, 100 mm and inset, 50 mm).

(F and G) Representative images of Ki-67 and P2Y12 labeling in the CC of (left) s
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of stroke, particularly at this transitional time point as an initial

wave of damage and danger/distress signals triggers brain-

wide events involved in neurorepair, neuroplasticity, and

neurodegeneration.3

Our scRNA-seq data showed multiple microglial clusters with

marked suppression of a panel of canonical homeostatic genes

differing according to their combinations of elevated metabolic,

inflammatory, and phagolysosomal gene modules. The DAM/

ARM-like microglial cluster (cMG7) was notable for its vast

array of genes altered, many associated with bioenergetic,

redox, and lipid metabolic processes marking this state as

particularly reactive. Type 1 IFN-enriched (cMG5) and chemo-

kine-enriched (cMG10) microglia, in contrast, highly elevated

entirely distinct gene sets of smaller size. This might suggest

the segregation of functional properties through exposure to

distinct stimuli and is supported by spatially dependent expres-

sion of microglial transcripts characteristic of these discrete

scRNA-seq clusters. Spp1+Fcrls+ microglia were most abun-

dant in the peri-infarct area and elevated in number compared

to sham-operated controls. In contrast, Ccl3+Fcrls+ microglia

were evident in both peri-infarct areas and remotely, including

in contralateral regions. Beyond this bi-hemispheric pattern,

there was a non-random distribution of these contralateral

Ccl3+Fcrls+ microglia, with most located in cortical areas con-

nected by axonal tracts to the infarct and peri-infarct region

and along the axonal tracts themselves (e.g., callosal fibers).

This specific pattern, and the elevated numbers of Ccl3+Fcrls+

microglia in MCAO compared to sham-operated mice, also

supports that these remote reactive microglia and the cMG10

cluster are a specific response to MCAO and not surgical

stress or reflecting a pre-existent baseline microglial state.

Given their anatomical distribution, this state of microglial reac-

tivity may be associated with altered structural or functional

neural connectivity between regions proximal and distant to

the primary stroke injury. Remote neurodegeneration and neu-

roplasticity in connected brain areas are increasingly recog-

nized to occur after acute stroke and are implicated in long-

term motor and cognitive outcomes.31,33,37

Our quantitative cross-model/disease analysis showed that

stroke-enriched cMG7 reactive microglia shared significant sim-

ilarity with those observed in CNS amyloidopathy, chronic de/

remyelination, spinal cord trauma, axotomy, and aging (Fig-

ure S11). Their common profile is defined by the high expression

of marker genes such as Lgals3, Spp1, Plin2, and Apoe:multiple

elevated cathepsin andmetabolic genes, reflective of an expres-

sion state originally referred to as the DAM/ARM state upon their

discovery in CNS amyloidopathy models.43,48 Two recent
rotein levels

rated control brain sections and (bottom) 3 days following stroke.

cortex and (right) stroke peri-infarct (scale bar, 50 mm).

reen), Fcrls+Ccr2�Mki67+ (orange), and Fcrls�Ccr2+Mki67+ (violet) phenotypes

roke peri-infarct in each mouse (n = 4 biological replicates [animals] per group).

, 50 mm).

arct alongside the homeostatic microglial marker P2Y12. P2Y12 intensity is

, and yellow/white high expression (scale right). Inset is higher resolution of the

ham and (right) stroke (F) and Contra (G) of same groups (scale bar, 25 mm).
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studies using a different (transient) stroke model also observed a

cluster of microglia/myeloid cells with the characteristic DAM/

ARM profile,9,28 and while some stroke-specific elements have

been proposed, there appear many more similarities than differ-

ences with chronic disease DAM/ARM. The induction of a micro-

glial state recently demonstrated after spinal cord trauma

(termed ‘‘migrating microglia’’; see Figure 6)45 is largely indistin-

guishable from the profile we show here after MCAO, and this

spinal trauma phenotype also overlapped closely with chronic

disease microglia. In both stroke and spinal cord trauma, the

DAM-like state is evident within days of the insult, highlighting

that this expression state of microglia is not confined to chronic

disease but is a conserved response evident in multiple acute

and chronic pathologies. Whether cells converge on this expres-

sion state despite exposure to different signals or there is an as-

yet unidentified signal common to all pathologies remains to be

determined. As noted above, Spp1+Fcrls+ microglia were mostly

located in peri-infarct areas after MCAO. The Spp1+ cMG7 mi-

croglial cluster we describe here expressed high levels of lipo-

metabolism genes such as Apoe, Fabp5, Nceh1, and Plin2.

Debris and lipid processing are a feature of peri-infarct remodel-

ing, and our data align with the recent report of lipid-laden and

lipid-processing microglia/macrophages of similar transcrip-

tional profiles in the infarcted tissue after transient MCAO.28

The IFN or interferon-stimulated gene (ISG)-enriched reactive

state (cMG5) also appears relatively conserved across patholog-

ical conditions. Recent studies have begun to indicate important

disease-modifying roles for IFN-enriched microglia in chronic

disease and aging.49,58 In contrast, the CCL chemokine-ex-

pressing cMG10 profile was relatively less well represented

across disease conditions, albeit evident in aging and spinal

cord injury and, interestingly, in acute,49 but not chronic,46 demy-

elination models. Given that the Ccl3+Fcrls+ microglia after

MCAO were associated spatially with white matter tracts and

brain areas remote but connected to the primary infarct, this

state may be driven by altered neuroaxonal activity and/or glia-

axonal signaling.

Microglial clusters with a cell cycle signature collectively

amounted to �9% of MCAO-derived microglia, and in situ

analyses showed that �15% of peri-infarct microglia were

Ki-67+. Our data clearly show that microglia, but not

monocytes/MdCs, are in cell cycle at this time point, consis-

tent with a recent scRNA-seq study in spinal cord trauma.45

This is despite the close spatial intermixing of microglia and

MDMs in peri-infarct tissue and ostensibly similar environ-

mental exposure, thus suggesting that injury-induced cues

combine with ontogeny-determined factors to influence cell

cycle entry. Inhibiting microglial proliferation after MCAO is

detrimental to outcome,59 whereas protective effects have

been reported in chronic disease settings.60–62 Our data here

point to a potentially important relationship between the cell

cycle and microglial reactive state development. Co-expres-

sion and pseudo-temporal analysis both suggested the

G2M-phase-enriched cMG16 as an intermediary state be-

tween cell cycle and the DAM-like cMG7. WGCNA of differen-

tially expressed genes showed several gene modules shared

by cMG16 and cMG7, thus emphasizing their transcriptional

relatedness. CSF1R and TREM2 are both known regulators
of microglial proliferation. CSF1R inhibitors lowered, whereas

TREM2 agonists augmented, the frequency of DAM/ARM-

like cells within the microglial population during CNS amyloid-

osis.63,64 Collectively, these data warrant that future studies

more deeply explore the connections between the microglial

cell cycle and the emergence of reactive states.

The influx of MdCs to the post-stroke brain is well established,

and our scRNA-seq data highlight that they contribute >15% of

the cells forming the more abundant and phenotypically diverse

mononuclear myeloid population in MCAO. A key function of

injury-recruited monocytes is to differentiate to more specialized

derivatives, which, after stroke, are not well defined. Our clus-

tering and pseudo-temporal analyses show clear differentiation

along two major pathways: one producing cells with a highly

specialized macrophage phenotype enriched in phagolysoso-

mal and lipometabolism gene modules and the other generating

cells of DC phenotype highly enriched for antigen presentation

genes. We noted with interest that the MoDC cluster (cNMG1),

exclusive to the MCAO condition, was the most abundant that

demonstrated a DC phenotype. The complete segregation of

MoDC and cDC clusters from all microglia by unsupervised clus-

tering of cell clusters based on gene module co-expression (Fig-

ure 5B) reinforces the lack of any DC-like signature of microglia

at this time point. A recent study showed that brain-infiltrating

myeloid cells are functionally much more capable than microglia

of stimulating T cell proliferation after MCAO and that CD11c

expression on microglia does not correlate with any difference

in their antigen-presenting capacity.65

In contrast to the distinctiveness of all microglial clusters and

MoDCs, our unbiased WGCNA-based clustering of all myeloid

cell clusters showed a striking similarity between the MDM

(cNMG2) and DAM/ARM-like microglial (cMG7) clusters based

on shared high expression of multiple genemodules. These con-

tainedmanyarchetypal DAM/ARMgenes andwere also enriched

for lysosomal, phagocytic, and lipometabolic processes. Our

data therefore suggest that a brainmacrophage phenotype char-

acterized by a phagolyosomal and lipometabolic transcriptional

identity, and thus resembling chronic disease DAM/ARM, arises

after stroke via dual sources, i.e., from resident microglia and

immigrant monocyte precursors. A recent study showed that

brain macrophages expressing MMP12 and osteopontin (en-

coded by Spp1), and thus proposed to reflect key features of

the DAM/ARM-like phenotype, were derived from both resident

microglia andCxcr4-expressing bonemarrow cells.28 The contri-

bution of dual monocyte and resident brain sources of macro-

phages accumulating in chronic disease around amyloid de-

posits has also recently been proposed.66 Here, our use of

Ms4a3-based fate-mapping confirmed the resident and immi-

grant sources ofmacrophagephenotypes.Fcrls�Csf1rloGpnmb+

cells with a highly ameboid morphology (reflecting Gpnmb-ex-

pressing MDMs) were almost entirely located in the peri-infarct

zone, which was concordant with the almost exclusive origin of

Ly6C+MdCs from theMCAOhemisphere in our scRNA-seqdata-

set (Figure 3). TheseMs4a3-TdT+Gpnmb+ MDMs were highly in-

termixed with peri-infarct Fcrlshi microglia and co-located within

the same territory as FcrlshiSpp1+ microglia. Spatial signals en-

riched in the peri-infarct zone may shape macrophages in this

area toward a conserved phenotype, despite differing origins.
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Whether peri-infarct co-located stroke-inducedmacrophages of

distinct ontogenies yet similar effector phenotypes engage in

similar tasks functionally is unclear. Due to the restricted tools

available, previous studies were limited to comparing functional

properties of bulk resident microglia and non-resident mono-

cyte-derived populations but, nonetheless, suggested that the

MdCs are more phagocytic.27 Future studies harnessing

advanced tools will be needed to examine comparative functions

at more discrete cell state resolution and of functional properties

beyond phagocytosis. Moreover, the proximity of microglial and

MDMhighlights their potential for communication.We previously

showed howMDMs can affect microglial function ex vivo and the

impact of monocytes on long-term microglial phenotype after

CNS trauma.21

In summary, combinatorial influences of resident and immi-

grant myeloid ontogeny and brain location relative to primary

stroke infarct pathology and its remote connected sites create

patterns of spatially organized microglial and MdC states after

stroke. We propose that these states will influence global brain

function and key stroke outcomes such as cognitive and motor

recovery. Further studies achieving more targeted manipulation

of specific myeloid states are warranted to empirically define

their functional roles.

Limitations of the study
The inclusion of ipsilateral and contralateral hemispheres was a

productive approach to discovering the global brain scRNA-seq

profile not available to date but can cause challenges in inter-

preting stroke-specific effects in some cases. This is offset by

our validation of scRNA-seq patterns with a published dataset

containing sham-operated controls and our in situ tissue ap-

proaches that included sham-operated controls. This showed

marked concordance between scRNA-seq and ISH patterns

confirming stroke-specific induction. We studied a single time

point 3 days after MCAO, which precludes assessment of how

the composition of cell states and types may progress into the

chronic phase of stroke important for longer-term outcomes. It

is unclear whether some cell states represent transient or

discrete fixed phenotypes over a more protracted time frame,

and the long-term fate of cells and substates remains unknown

currently. A recent study of note suggests that the DAM/ARM-

like microglial state is present chronically after CNS trauma,67

but whether this results from early conversion and then persis-

tence or later but transient conversion is unknown, a distinction

with considerable implications for therapeutic manipulation. We

used only young adult male mice, and given that sex- and age-

related differences in myeloid cell properties are increasingly

recognized and stroke is more prevalent in older individuals,

these factors will need to be systematically integrated into future

studies. Profiling of human ischemic stroke tissue will be

required to determine which features apply across species and

inform interventional strategies.
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65. Gallizioli, M., Miró-Mur, F., Otxoa-de-Amezaga, A., Cugota, R., Salas-Per-

domo, A., Justicia, C., Brait, V.H., Ruiz-Jaén, F., Arbaizar-Rovirosa, M.,

Pedragosa, J., et al. (2020). Dendritic Cells and Microglia Have Non-

redundant Functions in the Inflamed Brain with Protective Effects of

Type 1 cDCs. Cell Rep. 33, 108291. https://doi.org/10.1016/j.celrep.

2020.108291.

66. Silvin, A., Uderhardt, S., Piot, C., DaMesquita, S., Yang, K., Geirsdottir, L.,

Mulder, K., Eyal, D., Liu, Z., Bridlance, C., et al. (2022). Dual ontogeny of

disease-associated microglia and disease inflammatory macrophages in

aging and neurodegeneration. Immunity 55, 1448–1465.e6. https://doi.

org/10.1016/j.immuni.2022.07.004.

67. Hakim, R., Zachariadis, V., Sankavaram, S.R., Han, J., Harris, R.A., Brun-

din, L., Enge, M., and Svensson,M. (2021). Spinal Cord Injury Induces Per-

manent Reprogramming of Microglia into a Disease-Associated State

Which Contributes to Functional Recovery. J. Neurosci. 41, 8441–8459.

https://doi.org/10.1523/JNEUROSCI.0860-21.2021.

68. Liu, Z., Gu, Y., Chakarov, S., Bleriot, C., Chen, X., Shin, A., Huang, W.,

Dress, R.J., Dutertre, C.-A., Schlitzer, A., et al. (2019). Fate mapping via

Ms4a3 expression history traces monocyte-derived cells. Preprint at bio-

Rxiv. https://doi.org/10.1101/652032.

69. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson,

R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017).

Massively parallel digital transcriptional profiling of single cells. Nat. Com-

mun. 8, 14049. https://doi.org/10.1038/ncomms14049.

70. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck,

W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019).

Comprehensive Integration of Single-Cell Data. Cell 177, 1888–

1902.e21. https://doi.org/10.1016/j.cell.2019.05.031.
71. Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B.Z., Mauck,

W.M., Smibert, P., and Satija, R. (2018). Cell Hashing with barcoded anti-

bodies enables multiplexing and doublet detection for single cell geno-

mics. Genome Biol. 19, 224. https://doi.org/10.1186/s13059-018-1603-1.

72. Stoeckius, M., Hafemeister, C., Stephenson,W., Houck-Loomis, B., Chat-

topadhyay, P.K., Swerdlow, H., Satija, R., and Smibert, P. (2017). Simulta-

neous epitope and transcriptome measurement in single cells. Nat.

Methods 14, 865–868. https://doi.org/10.1038/nmeth.4380.

73. McGinnis, C.S., Patterson, D.M.,Winkler, J., Conrad, D.N., Hein, M.Y., Sri-

vastava, V., Hu, J.L., Murrow, L.M., Weissman, J.S., Werb, Z., et al. (2019).

MULTI-seq: sample multiplexing for single-cell RNA sequencing using

lipid-tagged indices. Nat. Methods 16, 619–626. https://doi.org/10.1038/

s41592-019-0433-8.

74. Chung, N.C., and Storey, J.D. (2015). Statistical significance of variables

driving systematic variation in high-dimensional data. Bioinformatics 31,

545–554. https://doi.org/10.1093/bioinformatics/btu674.

75. Freeman, T.C., Horsewell, S., Patir, A., Harling-Lee, J., Regan, T., Shih,

B.B., Prendergast, J., Hume, D.A., and Angus, T. (2020). Graphia: A plat-

form for the graph-based visualisation and analysis of complex data. Pre-

print at bioRxiv. https://doi.org/10.1101/2020.09.02.279349.

76. van Dongen, S., and Abreu-Goodger, C. (2012). Using MCL to Extract

Clusters from Networks. In Bacterial Molecular Networks: Methods and

Protocols, J. van Helden, A. Toussaint, and D. Thieffry, eds. (Springer

New York), pp. 281–295. https://doi.org/10.1007/978-1-61779-361-5_15.

77. Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for

weighted correlation network analysis. BMC Bioinf. 9, 559. https://doi.

org/10.1186/1471-2105-9-559.

78. Kaufman, L., and Rousseeuw, P.J. (1986). CLUSTERING LARGE DATA

SETS. In Pattern Recognition in Practice, E.S. Gelsema and L.N. Kanal,

eds. (Elsevier), pp. 425–437. https://doi.org/10.1016/B978-0-444-87877-

9.50039-X.

79. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A.,

Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis

of multimodal single-cell data. Cell 184, 3573–3587.e29. https://doi.org/

10.1016/j.cell.2021.04.048.

80. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,

Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene

ontology: tool for the unification of biology. The Gene Ontology Con-

sortium. Nat. Genet. 25, 25–29. https://doi.org/10.1038/75556.

81. Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ri-

beiro, A., Griss, J., Sevilla, C., Matthews, L., Gong, C., et al. (2022). The re-

actome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–

D692. https://doi.org/10.1093/nar/gkab1028.

82. Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes

and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/

nar/28.1.27.

83. Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R

package for comparing biological themes among gene clusters. OMICS

16, 284–287. https://doi.org/10.1089/omi.2011.0118.

84. Meo, P.D., Ferrara, E., Fiumara, G., and Provetti, A. (2011). Generalized

Louvain Method for Community Detection in Large Networks, pp. 88–93.

https://doi.org/10.1109/ISDA.2011.6121636.
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McColl (barry.mccoll@ed.ac.uk).

Materials availability
No new or unique materials were generated as part of this study.
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Data and code availability
d Single cell RNA sequencing (scRNAseq) data have been deposited at GEO (GSE240368) and are publicly available as of the

date of publication. Accession numbers are listed in the key resources table. Key processed scRNAseq data are provided

in Supplemental tables. Interactive visualisation and analysis of the dataset can be carried out at our openly accessible inter-

active web browser application, Stroke-Brain-MySeq (https://mccoll-lab-uoe.shinyapps.io/shinyapp/). All other data support-

ing the findings of this study are available from the lead contact upon reasonable request.

d This paper does not report original code. Sources of standard code used are cited in the STAR Methods.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Experimental stroke model
Procedures were conducted on male 10–12 week old C57BL/6J mice (Charles River Laboratories) orMs4a3CreERT2/+RosaTdT/+ mice,

generated by breeding Ms4a3CreERT268 and RosaLSL�TdT (Ai14) mice (JAX:007914). Mice were maintained under specific pathogen-

free conditions and a standard 12 h light/dark cycle with unrestricted access to food and water. Mice were housed in individually

ventilated cages in groups of up to five mice and were acclimatised for a minimum of one week prior to procedures. All procedures

involving live animals were carried out under the authority of a UK Home Office Project Licence in accordance with the ‘Animals (Sci-

entific Procedures) Act 1986’ and Directive 2010/63/EU and were approved by The University of Edinburgh Bioresearch & Veterinary

Services Animal Welfare and Ethics Review Body (AWERB). Experimental stroke was induced by permanent distal middle cerebral

artery occlusion (dMCAO) under isoflurane anesthesia (mixed with 0.2 L/min O2 and 0.5 L/min N2O). Core body temperature was

maintained at 37 ± 0.5�C throughout the procedure with a homeothermic system (Harvard Apparatus, UK). A vertical incision be-

tween the left eye and ear was made and the main trunk and bifurcations of the middle cerebral artery exposed via a subtemporal

craniectomy. The site was cooled continuously with saline application. The middle cerebral artery was electrocoagulated at the junc-

tion of its main trunk and bifurcation and cessation of blood flow confirmed visually prior to cutting through the coagulated area. The

temporal muscle was repositioned, the incision sutured and topical local anesthetic (lidocaine/prilocaine, LMX4) applied. Anesthesia

was discontinued and mice were administered 0.5 mL sterile saline subcutaneously. Mice were returned to home cages on a heating

blanket and then transferred to pre-surgery holding areas.

METHOD DETAILS

Cell sorting and flow cytometry
Mice were perfused transcardially with 0.9% saline under terminal isoflurane anesthesia to remove circulating blood and brain sam-

ples containing the infarct/peri-infarct region or the equivalent region in the contralateral hemisphere were dissected. Samples were

placed in 1X Hank’s buffered saline solution (HBSS) (without Ca2+ and Mg2+) (Gibco, Life Technologies) on ice and minced to fine

pieces using a scalpel blade and then transferred to a 15 mL Dounce tissue homogeniser and manually dissociated. Samples

were centrifuged at 400 g for 5 min at 4�C with no brake, supernatant was aspirated and pellets resuspended in 35% Percoll (GE

healthcare) in HBSS (without Ca2+ & Mg2+) and carefully overlaid with 1X HBSS. Samples were centrifuged at 800 g for 45 min at

4�C with no brake for density separation of cells from myelin. Supernatant and myelin layer were removed, and cells resuspended

in 1X HBSS (without Ca2+ or Mg2+). Cell suspensions were centrifuged at 400 g for 5 min at 4�C with no brake and resuspended

in staining buffer (DPBS (without Ca2+ and Mg2+) (Gibco, Life Technologies) containing 0.1% low endotoxin BSA (Sigma). Cells

were incubated with anti-CD16/32 (Clone: 93, Biolegend) for 30 min at 4�C to block non-specific Fc receptor binding and then for

30 min at 4�C with the following fluorochrome-conjugated antibodies (anti-CD45-PE (clone 30-F11), anti-CD11b-BV711 (clone

M1/70), anti-Ly6G-APC (clone 1A8), anti-CD3-APC-Cy7 (clone 17A2), anti-CD19-PE-Cy7 (clone 6D5), Biolegend) mixed with one

of three distinct barcoded hashtag antibody-oligonucleotide (HTO) conjugates (TotalSeq-A, Biolegend) for each mouse to enable

cell hashing. Cells were washed, centrifuged 400g for 5 min at 4�C with no brake, and resuspended in FACS buffer (0.04% BSA

in DPBS). A myeloid-enriched cell population (CD3�CD19-Ly6G-CD45+) was sorted into FACS buffer using a FACSAria IIu (Becton

Dickinson, Oxford, UK) and cell suspensions stored on ice. Unstained and single-stained controls were used to define the sorting and

cytometry analysis gating positions. Approximately 30,000 cells per individual brain sample from each mouse (n = 3 mice) were

sorted and cells ipsilateral or contralateral to MCAO pooled i.e., a pooled ipsilateral sample and a pooled contralateral sample

each comprising HTO-barcoded cells from three bio-replicates (mice) was formed. Cytometry analysis was conducted on the

FCS3 data files acquired during the cell sorting procedure using FCS Express 7 (De Novo Software).

Single cell library preparation and sequencing
Single cell 30 gene expression (mRNA) and cell surface hashtag-oligonucleotide (HTO) libraries were prepared according to the Chro-

mium Single Cell 3ʹ with Feature Barcoding technology for Cell Surface Protein Reagent Kit v3 protocol (10X Genomics) with mod-

ifications for incorporation of TotalSeq-A HTO antibodies (clones M1/42; 30-F11, BioLegend). Briefly, generation of gel beads in

emulsion (GEM) partitionedwith single cells, reverse transcription to generate cDNA andHTO-barcoded DNA, andDNA amplification
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were performed according to manufacturer instructions with the addition of HTO primers during DNA amplification. Amplified cDNA

and HTO-derived DNAwere separated by size selection, fragmented and libraries constructed. Expected fragment size distributions

for cDNA and HTO libraries were confirmed by electrophoresis (Agilent Bioanalyzer). cDNA and HTO libraries were mixed at a ratio of

4:1 for the pooled sample ipsilateral to MCAO and separately for the pooled sample contralateral to MCAO. Ipsilateral and contra-

lateral samples (each containing combined cDNA and HTO libraries) were loaded on separate lanes of an SP flow cell and paired-end

sequencing (Read 1: 28 cycles; i7 index read 1: 8 cycles; Read 2: 91 cycles) was conducted on a Novaseq 6000 (Illumina) to achieve a

minimum read depth of 20,000 reads per cell for cDNA (gene expression) and 5000 reads per cell for HTO (mouse ID). cDNA and HTO

sequencing reads were demultiplexed according to unique i7 indexes.

Single-cell RNA-Seq quality control and pre-processing
Count matrices were generated for each library using the 10X Genomics CellRanger v3.0.269 pipeline. First, raw reads were demul-

tiplexed to produce fastq files. Second, reads were aligned to the mouse reference genome (GRCm38) and quantified. Resultantly,

two unique molecule identifiers (UMI) based expression matrices were generated each for the ipsilateral and contralateral conditions

whichwere pre-processed and analyzed using the Seurat v3 package in R.70 As the sampleswere prepared and sequenced together,

they represented a single batch and hence analyzed together as a merged dataset. Subsequently, quality control was conducted for

cells and genes, where genes expressed in at least three cells were incorporated in downstream analyses. Cells were initially filtered

based on the number of genes (at least 700) expressed and the mitochondrial percent (less than 8%). Subsequent to TPM like log

normalisation using a scaling factor of 104, cells with normalised UMI between 2,500 and 4,000 were considered for downstream

analyses. To identify multiplets, HTOs71 were quantified for quality controlled cells of each condition using CITE-seq-Count72

(https://github.com/Hoohm/CITE-seq-Count). The hashtag oligos (HTO) for each cell were normalized using a centered log-ratio

transformation. Cells were then demultiplexed using the MULTI-Seq approach73 and those assigned as multiplets or empty droplets

were filtered out. To remove donor effects, canonical correlation analysis (CCA) was adopted using default parameters fromSeurat.70

Briefly, the approach identifies similar cells or ‘‘anchors’’ between datasets (in this case donors) based on their similarity in a joint

reduced space, CCA components. The differences between these anchors represents the differences between donors and is

accordingly used to calculate a weighted correction vector. These vectors are then applied on cells of the original gene expression

matrix to remove donor effects.

Cell clustering
The integrated scRNA-Seq dataset was then scaled and regressed for percent mitochondrial content. Principal component analysis

(PCA) was used to reduce the dimensions of the dataset to the 47most significant (p < 0.05) PCs based on Jackstraw permutations.74

Clustering on thewhole dataset was done using a network-based approach usingGraphia.75 A k-nearest neighbor (k = 10) network of

cells was constructed by connecting cells with a high Pearson similarity coefficient (based on the significant PCs) rR 0.5 to accom-

modate all cells. The resulting network was clustered using the Markov Clustering algorithm (MCL) with a low inflation MCLi = 1.35.76

To estimate appropriateness of clustering, we calculated ROGUE40 scores for each cluster in each of the datasets (all cells, subclus-

tered microglia and subclustered non-microglial myeloid cells). ROGUE scores range from 0 to 1, with under-clustering represented

by lower values < 0.8 and pure clusters by a value of 0.9–1. We sought a clustering granularity that was conservative and aligning with

key biological ‘‘checkpoints’’ (e.g., discrimination of cell cycle phases) to avoid over-clustering.

Comparing cell proportions
The scRNA-Seq experiment was conducted by enriching for myeloid cell types, and the considerably altered composition of mono-

nuclear phagocytes in response to MCAO made a direct comparison between MCAO and CTRL relative abundance inaccurate.

Hence, we assumed that the number of resident homeostatic or homeostatic-like microglia from cluster 1 and 2 respectively would

not change significantly between conditions, therefore we normalised cell frequencies of each cluster (considering condition and

donor) with those of cluster 1 and 2. The normalized cell frequencies were then compared between conditions for cell clusters using

a t test.

Generating pseudo-bulk samples from scRNA-Seq to construct gene co-expression networks
All the gene co-expression networkswere constructed by first constructing pseudo-bulk samples from the scRNA-Seq data and then

conducting weighted gene co-expression network analysis or WGCNA.77 This preceding step of constructing pseudo-bulk samples

aimed to improve the signal-to-noise ratio of single-cell data, capture the intra- and inter-cell type variation and generate a cell type

balanced correlation space i.e., each cell type is equally represented as each has equal number of representative pseudo-bulk sam-

ples. The pseudo-bulk algorithm was used to generate five pseudo-bulk samples for each cluster. The strategy for generating these

pseudo-bulk samples was conducted in the following two steps. 1) Each of the clusters was further clustered into five sub-clusters

using Clara78 (an extension of k-medoid clustering) based on the cell-to-cell similarity determined by the significant PCs. In the pro-

cess, the medoid cell of each sub-cluster was also identified. 2) For each of these representative medoid cells, the expression values

for genes were averaged across their ten nearest neighbors (based on significant PCs) within the cluster. As a result, five sub-clus-

ters/pseudo-bulk samples were generated for each of the original clusters. The resultant pseudo-bulk vs. gene expression matrix

was used to identify co-expressing genes using WGCNA.77 A soft threshold of b= 6 was used to construct an adjacency matrix of
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pairwise Pearson correlations between genes. Thismatrix was then transformed into a topological overlapmatrix to take into account

the structure of the data. Hierarchical clustering was performed with parameters set for the module size (minModuleSize = 10), the

granularity of clustering (deepSplit = 4) and the number of clusters (mergeCutHeight = 0.15).

Differential gene expression
Differentially expressed genes for each cluster were identified using the negative binomial generalized linear model available in

Seurat.79 Furthermore, only those genes were tested whose log fold change was greater than 0.25 (in either direction) and ex-

pressed in a minimum of 25% of cells in the groups examined. To provide functional annotation to subclustered microglia and

non-microglia cell clusters, differentially-expressed genes for each cluster were examined for their enrichment in biological pro-

cesses as defined by gene ontology (GO),80 Reactome81 and Kyoto encyclopedia of genes and genomes (KEGG)82 databases

using clusterProfiler in R.83

Functional enrichment analysis of WGCNA gene modules
Gene modules generated from WGCNA were examined for their enrichment in biological processes as defined by gene ontology

(GO),80 Reactome81 and Kyoto encyclopedia of genes and genomes (KEGG)82 databases using clusterProfiler in R.83 Furthermore,

to compare the enrichment of KEGG terms across gene clusters, the top 6 terms for each cluster were compared across all clusters

shown in Figures. In all cases, the biological processes with significant (Padj < 0.05) enrichment were considered with P adjusted

using the Benjamini-Hochberg correction for multiple testing.

Cell cycle analysis
Cell clusters were annotated for one of the three cell cycle stages, including G1, G2 and S phase using the cell cycle scoring algorithm

available in Seurat v370 adapted from.42 The algorithm generates a standardised score for each cell based on their average expres-

sion of G2 and S phase gene signatures. Based on these scores, cells are assigned to one of the three phases, where G1 (non-

cycling) phase presents poor scores for both G2 and S phase gene signatures.

RNA velocity and pseudotime analysis
To estimate the direction and velocity of differentiating cells, the velocyto package in python was used with parameters proposed by

the authors (https://github.com/velocyto-team/velocyto-notebooks/blob/master/python/Haber_et_al.ipynb). First, the spliced and

unspliced reads were quantified from the BAM files generated from the cellranger pipeline. Cells previously selected based on

the Seurat QCwere used in the analysis. Geneswere filtered based on their minimum expression, average expression and coefficient

of variation. The data was subsequently normalized, and the 3,000 most variable genes were used to calculate PCAs. The top nine

PCs were then used for kNN-imputation with k = 70 and a gamma distribution was fitted to each gene. The resultant expression ma-

trix was used to estimate the velocity and future cellular states i.e., the direction.

Highly variable genes along the differentiation trajectory were determined using pseudotime analysis using Slingshot with default

parameters.56 First, the algorithm re-clustered the data using a Gaussian mixture model. Next, the start and endpoints of differen-

tiation previously determined by RNA velocity were used to construct a minimum spanning tree on which simultaneous principal

curves were fitted. Each cell was then aligned to the curves, thus aligning them along pseudotime. Finally, genes significantly chang-

ing (p < 0.05) along pseudotime were determined using a general additive model.

Cross-model microglial comparison
For disease model comparison, nine studies (including this study) were selected to represent different neurological disease condi-

tions.43–50 Microglial clusters fromwithin these studies were identified and included for the analysis. As a note, DEG analysis for most

studies compared one microglial cluster to all others, while DEGs from Mathys et al.44 were identified by comparing early/late

responsemicroglial subtypes (Cluster 3, 6 and 7) with homeostatic microglia (Cluster 2). To capture genes representative of a cluster,

DEGswere filtered by log fold change >0.25, and Padj <0.05. In the case ofMathys et al.,44 geneswithmaximum likelihood estimation

>0 (alternate metric to fold change) were considered. Furthermore, of these filtered DEGs the top 500 genes (based on log fold

change) were considered for eachmicroglial cluster across publications. The resultant gene lists were compared using Fisher’s exact

t test which provided an odds ratio (values greater than 1 are indicative of associated/correlated gene lists) and aP. Furthermore, only

significant (p < 0.05 and odds ratio >1) pairwise odds ratios were examined.

For comparing subclustered microglia profiles in the present study to sham-derived microglia from an independent dataset, we

selected the Zheng et al. dataset (GEO:GSE174574).9 The dataset was downloaded and processed using the Seurat pipeline.

Following log normalisation the most variable genes were identified and PCA was conducted. The top 20 PCs were used to cluster

the data using the Louvain algorithm.84 Microglia were subsetted using the following markers highlighted in the original study (Hexb,

Aldoc, Plp1, Ttr, Itm2a and Acta2) and clusters annotated using markers identified by the authors (Figure S18B). To compare sham-

enriched cluster 0 (c0) fromZheng et al. withmicroglia clusters from the present study, the two datasets were normalised and expres-

sion values for each gene scaled by converting expression values of genes to Z-scores within each dataset. Normalised expression

values for top cluster marker genes were then compared across Zheng_c0 and microglia clusters from the present study, visualised

by heatmap (Figure S18C).
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Multiplex fluorescence in situ hybridisation
RNAScope Multiplex Fluorescent Assay v2 (ACDBio, 323100) was performed on 20mm cryostat-sectioned fixed-frozen brain sec-

tions using slight modifications to manufacturer’s protocol. Sections were allowed to equilibrate to room temperature (RT) before

washing with dH2O and baking on to slides at 60�C. Slides were post-fixed (10% neutral-buffered formalin) for 15 min at 4�C and

dehydrated through alcohols. Hydrogen peroxide was applied for 10 min at RT and antigen retrieval was performed for 15 min in

a pre-heated (20 min) plastic Coplin jar in a 97.5�C waterbath. Sections were left at RT overnight before placing into humidity cham-

bers and protease III was applied for either 20 min (for combination with protein immunofluorescence) or 30 min at 37�C. The
following probes were incubated for 2 h at 40�C Fcrls (441231-C2), Ccl3 (319471), Spp1 (435191-C3), Csf1r (428191), Gpnmb

(489511-C3), Ccr2 (501681), Mki67 (416771-C3), Cst7 (498711-C2). Probes were subsequently amplified and labeled with Tyramide

488 (Invitrogen, B40953), 555 (Invitrogen, B40955) or 647 (Invitrogen, B40958). When co-labelling with immunofluorescence,

sections were immediately placed into an antibody dilution buffer containing either Goat-anti-tdTomato (10mg/mL, AB8181) or

Rabbit-anti-P2Y12 (0.66mg/mL, AS55043A) and left to incubate at 4�C overnight. Donkey-anti-Goat-AF555 or Donkey-anti-Rab-

bit-AF555 were subsequently incubated for fluorescent labeling. Nuclei were labeled with 1 mg/mL DAPI. Low-power images were

acquired using an Axioscan Slide Scanner and high-power confocal images using an Opera Phenix Plus high-content confocal

imager. Maximum intensity projections were processed from confocal stacks and cells from 3 to 6 non-overlapping 300mm 3

300mm regions of interest were manually quantified per brain region per section in each individual mouse brain (n = 4 mice per

condition).

Immunofluorescence
For immunolabelling of P2Y12 and Ki-67, sections were equilibrated to RT, washed with dH2O and baked for 30 min at 60�C. Antigen
retrieval was performed using Tris-EDTA buffer (10mMTris Base, 1mMEDTA, pH 8.6) for 20min in a non-preheated plastic Coplin jar

in a water bath set to 97.5�C for 20 min. Rabbit-anti-Ki-67 (1.25mg/mL, ab15580) was incubated overnight at 4�C. Endogenous per-

oxidas activity quenched with 0.3% H2O2 RT 30 min. Biotinylated Goat-anti-Rabbit (ZH0615) incubated for 90 min, then strep-HRP

(Tyramide amplification kit, B40933) incubated for 45 min before amplification with Tyramide 555. To allowmultiplexing of antibodies

raised in the same species, antigen retrieval was performed again in the same manner to elute Ki-67 antibodies (leaving Tyramide

signal untouched). Rabbit-anti-P2Y12 (AS55043A) was incubated overnight at 4�C and fluorescently labeled using Goat-anti-Rab-

bit-AlexaFluor-647 (A21244), incubated for 90 min RT. Primary antibodies were incubated in buffer containing 1% BSA, 0.3% Triton

X-100, 1X PBS, other antibodies were incubated in 0.1% BSA, 0.5% Tween, Tris-buffered Saline. 33 2 min washes were performed

between each step following primary antibody incubation using 0.5% Tween, Tris-buffered Saline. Widefield images of P2Y12 and

Ki67 were acquired using an AxioImager.D2.

To compare microglial morphology across brain regions connected and unconnected to the primary infarct, we searched the Allen

brain connectivity atlas (https://connectivity.brain-map.org/) for experiments that injected tracers into brain areas matching those

affected by the primary infarct based on cresyl violet staining of 20mm sections from our MCAO brains. We chose experiment

100141780 that injected a tracer into the primary motor area and extracted the projection segmentation image from section 44.

This section demonstrates high connectivity between hemispheres through transcallosal fibers and the lack of connectivity of the

primary motor area with medial septal complex (MSC), both supported by projection volumes calculated by the Allen brain atlas

(contralateral primary motor cortex 1.48, medial septal nucleus 0.00). Images of P2Y12-labelled brain sections were acquired

from the peri-infarct, contralateral cortex and MSC across three brain sections per brain from sham-operated and MCAO mice

(n = 5). Three non-overlapping 1503 150 mm boxes were drawn per image and microglial morphology quantified on a per-cell basis

based on the following scoring scale: 1, Ramified; 2, De-/Re-ramifying; 3, Hypertrophic; 4, Rod-like; 5, Ameboid. Scoring was aver-

aged for analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Our primary aim was to conduct a hypothesis-free scRNASeq profiling study. Formal sample size estimates were not conducted

however cell isolation was guided by estimating the number of cells required to detect a rare cell type within each individual sample

using the following parameters (frequency = 0.01, minimum number of cells = 10, detection power = 0.95) (https://satijalab.org/

howmanycells/).85 Cell hashing (see above) from three independent mouse brains provided bio-replication within the dataset. Sta-

tistical approaches for analysis of scRNA data are described above. Cytometry data were analyzed byWelch’s t test using Graphpad

Prism (v9). For quantification of multiplex smFISH, a linear mixed-effect model was utilised to compare the distribution of cell phe-

notypes within brain regions across sham and stroke brains (n = 4 mice per condition). Within-subject design with random intercepts

was used and factors (phenotype, region) and interactions were treated as fixed-effects and their inclusion evaluated through log

likelihood ratio. Holm-Sidak post-hoc tests were utilised for a-priori planned pairwise contrasts. Normality and homoscedasticity

were evaluated graphically and box-cox transformations applied when necessary. One sided t-tests were utilised to compare stroke

phenotypes to 0 counts seen in sham controls. A paired t test was used to compare phenotype abundancewithin stroke brains and all

p values were adjusted using the Bonferroni method. All smFISH analyses were performed using R (Version 4.1.2).
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